

MODULE SPECIFICATION PROFORMA

Module Code:	ENG757			
Module Title: Design with Composites				
Level:	7	Credit Value:	20	
Cost Centre(s):	GSAC	JACS3 code:	H700	

School:	Applied Science, Computing & Engineering	Module Leader:	Martyn Jones	
Cohodulad lograming and to obling hours				40 bro
Scheduled learning and teaching hours				40 hrs
Guided independent study				160 hrs
Placement				0 hrs
Module duration (total hours)				200 hrs

Programme(s) in which to be offered (not including exit awards)		Option
MSc Engineering (Composite Materials)	~	

Pre-requisites

N/A

Office use only

Initial approval:19/06/2018With effect from:01/09/2018Date and details of revision:

Version no:2

Version no:

Module Aims

- To cover the detailed mechanics of composites and classical laminate theory.
- To apply principles to the choice and design of specific laminate(s).
- To understand the usage of computational methods in aiding the design process.
- To conceptually understand the potential issues that lightning strikes pose to an aircraft and its composite structure.
- Develop critical awareness of the impact of environmental factors on certain type of composites and how that affects their operation.

Intended Learning Outcomes

Key skills for employability

- KS1 Written, oral and media communication skills
- KS2 Leadership, team working and networking skills
- KS3 Opportunity, creativity and problem solving skills
- KS4 Information technology skills and digital literacy
- KS5 Information management skills
- KS6 Research skills
- KS7 Intercultural and sustainability skills
- KS8 Career management skills
- KS9 Learning to learn (managing personal and professional development, selfmanagement)
- KS10 Numeracy

At the end of this module, students will be able to		Key Skills		
1		KS3	KS4	
	Develop a comprehensive understanding of the mechanical properties of composites based upon classical laminate theory.	KS10		
	properties of composites based upon classical laminate theory.			
2	Descenter to the located at and understanding of the	KS3	KS4	
	Demonstrate the knowledge and understanding of the applications/limitations of finite elements in lamination design.	KS10		
3	Demonstrate a proficiency in the use of and an ability to	KS3	KS4	
	produce representative models with composite specific	KS10		
	sections of industry standards software such as CATIA V5 and ANSYS.			
	Critically evaluate laminate types to enable a group of allowables for initial designs to be created.	KS3	KS4	
4		KS6		
	allowables for initial designs to be created.			
Transferable skills and other attributes				
1. Communication				
2. ICT Technologies				
3. Time management and organisation				
4. Interpersonal skills				
5. Problem solving				

Derogations

Credits shall be awarded by an assessment board for those Level 7 modules in which an overall mark of at least 50% has been achieved with a minimum mark of 40% in each assessment element.

Assessment:

Indicative Assessment Tasks:

Assessment 1 - A technical report detailing the Finite Element Analysis and corresponding hand calculations of a composite component. The report will outline the design of a component within specific boundaries set by the assignment

Assessment 2 - A written examination to assess the capability of knowledge in the following areas, the effect of environmental conditions of a polymeric composite, the definition of and calculation of allowable loads in composites and manufacturing of composites and how this affects the mechanical properties of the component.

Assessment number	Learning Outcomes to be met	Type of assessment	Weighting (%)	Duration (if exam)	Word count (or equivalent if appropriate)
1	1. 2, 3	Coursework	50	N/A	2000
2	4, 5, 6	Examination	50	2 hours	

Learning and Teaching Strategies:

Lectures, exercise classes, laboratories session, directed private study and coursework. Throughout this module, students' learning will also be enhanced by comprehensive problem based learning, i.e. a concept used to enhance multidisciplinary skills using planned problem scenarios.

Syllabus outline:

- Classical laminate theory:
 - Effect of ply orientation, order, symmetry, balance on the characteristics and strength of the laminate. Optimisation, first ply failure. Main failure criteria max strain, max stress, Hills and Tsai?
- FE and specific dedicated computation programmes for composite design:
 - Introduction to FE analysis, how it works? Limitations and pitfalls (is the answer mesh independent? Locking...) Workflow for generating a model. Worked examples and case-studies.
- The diversity of terrestrial environments and their effect on composite components.
 - The effect of water, light, heat can have on polymers and composites. Ageing testing for composite materials and case-studies
 - Effect of hailstones on aircraft structures. Could be the key effect in composite aircraft design! Impact on aircraft structures.

- Manmade potential effects (e.g. solvents, galvanic, acoustic).
 - Reviewing various affects (e.g. swelling for solvents and chemical attack), galvanic cells between metal and composites.
- Fire in composites and transport structures.
 - Effect of fire on materials and the standards to be adhered to in interiors.
- Design of sandwich panels using standard analytical approaches. Examples of where sandwich panels are used in practice (e.g. aircraft flooring).
- Design allowable.
 - Basis and how generated. Testing regime to obtain design allowable. Standards and their application in testing.
- Design applied to standard and innovative types of composite joining processes.
 - Review of joint types (bolted, co-curing, bonded secondary etc). Structural analysis of joints using analytical and FE tools.
 - Hybrid design.
 - Effects of interfacing with metallic components, galvanic corrosion, LSP/EMH, thermal expansion, fatigue.
- Importance of lightning protection for composite material and associated components.
 - Lightning strikes and possible issues. Possible effects of lightning strike and ways of reducing the likelihood of damage. Effect on instrumentation? Earth bonding of aircraft?
 - Standards in lightning design problems (FAA, CAA). Reviewing of standards.
- Understanding the effect of problems and mistakes in manufacturing and how they are resolved. Allowable manufacturing defects in production of composites and their assembly; how this is related to NDT capability.

Indicative Bibliography:

Essential reading

Backman, B.F. (2005) Composite structures, design, safety and innovation. Oxford: Elsevier Ltd.

Other indicative reading

Gay, D., Hoa, S.V. and Tsai, S.W. (2003) Composite materials, design and applications. London and New York: CRC Press LLC.

Chou, T.W. (2005) Microstructural design of fibre composites, Cambridge: Cambridge University Press.

Niu, M.C.Y. (1996) Composite airframe structures; practical design information and data. 2nd ed. California: Adaso Adastra Engineering Centre.

Kelly, A. and Zweben, C. (2000) Comprehensive composite materials (volume 6: design and applications). New York and London: Elsevier Science Ltd.

AE-27 guidebook (1997) Design of durable, repairable, and maintainable aircraft composites. Pennsylvania: Society of Automotive Engineers, Inc. ISBN: 9780768000207

Journal. Composite science and technology. London and New York: Elsevier.